

Impact of Three-Phase Relative Permeability and Hysteresis Models on CO_2 Sequestration in CO_2 -EOR

Wei Jia, Brian McPherson

Water

Introduction

- ♦ Problem: CO₂ sequestration with enhanced oil recovery (CO₂-EOR) includes complex multiphase flow processes. Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models.
- ♦ Goal: Quantify impact of three-phase relative permeability model and hysteresis model on CO₂ sequestration in CO₂-EOR, using a generalized CO₂-EOR reservoir simulation model.

Generic CO₂-EOR Simulation Model

- \Rightarrow 8283 m \times 3908 m \times 239 m;
- \Rightarrow 34×16×25=13600 cells;
- \diamond 23 prod. wells, 22 inj. wells;
- ♦ 30 yrs. of CO₂-EOR+
- 20 yrs. of post-EOR CO₂ inj.(no prod.) + 50 yrs. of monitoring (no inj.) \diamond 45 synthetic well observation datasets used for Sequential Gaussian
- Simulation (SGS)
- \Rightarrow 50 heterogeneous realizations $c(\varphi, \mathbf{k})$ from SGS

Method

Results & Discussion

Net CO₂ Storage and Reservoir Pressure

Conclusion

H1 predicts slightly

lower CO₂ storage in gas phase

- The choice of three-phase relative permeability model and hysteresis model critically impacts CO₂ sequestration simulation forecasts;
- > Influences of both relative permeability and hysteresis are observed in all realizations;
- The specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model, especially with respect to predicted uncertainty.

*The work has been supported by the Phase III of Southwest Partnership on Carbon Sequestration (SWP) Farnsworth CO2-EOR project funded by the U.S. Department of Energy and the National Energy Technology Laboratory, contract DE-FC26-05NT42591.